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We obtain an upper bound on how well e" can be approximated on [-1, 1J
by (m, n)-degree rational functions (i.e., rational functions whose numerator
has degree m and whose denominator has degree n). In Meinardus' mono
graph [1, p. 168] it is shown that, at least when n = 1, the (m, n) degree
rationals do asymptotically better than the (m + n)-degree polynomials.

He makes the conjecture that the (sup-norm) distance from eX to the space
of (m, n) degree rationals is asymptotically

m! 11!
2"'+n(nz + 11)! (m + 11 + I)!

as m+l1~oo

and points out that H. Werner has obtained related numerical evidence.
We prove that this quantity (multiplied by a constant factor) does serve as
an upper bound for this proximity.

Set R(z) = f; tn(t + z)", e-t dt/f: (t - z)n t"'e-t dt. (R(z) is, in fact, the
(m, n)-degree Pade approximant to e2

.) Note that
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Also, if I ::: = !, then

,.00 fro ( (/1' ('''-1 (11) t"-2 . ., (t - z)n t"'e-t dt ~ til - ) -- - -- - ... \ t';' e- t rtt
'0 0 1. 2 2 4 ;

.. co .. ce, f 1)"
;? 2 j tn''''e-t dt - I It +.;; t"'e- t dt

'0 .10 \ L,.

= (2 - elI2 )(n + 111)! .

Altogether, then, we have
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, . el/2 2-111 - 11 - 1 m! n!
I eZ
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If we now write z = (x + iy)(2, with x 2 + y2 = 1, we obtain the above
bound for both eZ

- R(z) and elf - R(z), and multiplication yields thereby

2-"'-1l , I
I eX - R(z) R(z) I ~ 8 m.l1.

. (111+11)!(m+I1+1)!

OUf proof is completed by the observation that R(z) R(z) is an (m, n)-degree
rational function in the variable x.
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