Rational Approximations to e^{x}

D. J. Newman*

Department of Mathematics, Temple University, Philadelphia, Pennsylvania 19122
Communicated by Oved Shisha
Received September 15, 1975

We obtain an upper bound on how well e^{x} can be approximated on $[-1,1]$ by (m, n)-degree rational functions (i.e., rational functions whose numerator has degree m and whose denominator has degree n). In Meinardus' monograph [1, p. 168] it is shown that, at least when $n=1$, the (m, n) degree rationals do asymptotically better than the ($m+n$)-degree polynomials.

He makes the conjecture that the (sup-norm) distance from e^{x} to the space of (m, n) degree rationals is asymptotically

$$
\frac{m!n!}{2^{m+n}(m+n)!(m+n+1)!} \quad \text { as } \quad m+n \rightarrow \infty
$$

and points out that H. Werner has obtained related numerical evidence. We prove that this quantity (multiplied by a constant factor) does serve as an upper bound for this proximity.

Set $R(z)=\int_{0}^{\infty} t^{n}(t+z)^{m} e^{-t} d t / \int_{0}^{\infty}(t-z)^{n} t^{m} e^{-t} d t .(R(z)$ is, in fact, the (m, n)-degree Padé approximant to e^{z}.) Note that

$$
\begin{aligned}
\int_{0}^{\infty}(t & -z)^{n} t^{m} e^{-t} d t\left(e^{z}-R(z)\right) \\
& =\int_{0}^{\infty}(t-z)^{n} t^{m} e^{z-t} d t-\int_{0}^{\infty} t^{n}(t+z)^{m} e^{-t} d t \\
& =\int_{0}^{\infty}(t-z)^{n} t^{m} e^{z-t} d t-\int_{z}^{\infty}(t-z)^{n} t^{m} e^{z-t} d t \\
& =\int_{0}^{z}(t-z)^{n} t^{m e} e^{z-t} d t=z^{m+n+1} \int_{0}^{1}(u-1)^{n} u^{m} e^{(1-u) z} d t \\
& \ll|z|^{m+n+1} e^{|z|} \int_{0}^{1}(1-u)^{n} u^{m} d u=\frac{|z|^{m+n+1}}{(m+n+1)!} e^{|z|} m!n!
\end{aligned}
$$

* Supported by National Science Foundation Grant MPS 08098.

Also, if $1=:=\frac{1}{2}$, then

$$
\begin{aligned}
\int_{0}^{\infty}(t-z)^{n} t^{m} e^{-t} d t & \gg \int_{0}^{\infty}\left(t^{n}-\binom{n}{1} \frac{t^{n-1}}{2}-\binom{n}{2} \frac{t^{n-2}}{4}-\cdots\right) t^{\prime n} e^{-t} d t \\
& \geqslant 2 \int_{0}^{\infty} t^{n+m} e^{-t} d t-\int_{0}^{\infty}\left(t+\frac{1}{2}\right)^{n} t^{m} e^{-t} d t \\
& \geqslant 2(n+m)!-\int_{-1 / 2}^{\infty}\left(t+\frac{1}{2}\right)^{n+m} e^{-t} d t \\
& =\left(2-e^{1 / 2}\right)(n+m)!
\end{aligned}
$$

Altogether, then, we have

$$
\left|e^{z}-R(z)\right\rangle \leqslant \frac{e^{1 / 2}}{2-e^{1 / 2}} \frac{2^{-m-n-1} m!n!}{(m+n)!(m+n+1)!} \quad \text { in } \quad|z| \leqslant \frac{1}{2}
$$

If we now write $z=(x+i y) / 2$, with $x^{2}+y^{2}=1$, we obtain the above bound for both $e^{z}-R(z)$ and $e^{\bar{z}}-R(\bar{z})$, and multiplication yields thereby

$$
\left|e^{x}-R(z) R(\bar{z})\right| \leqslant 8 \frac{2^{-m-n} m!n!}{(m+n)!(m+n+1)!}
$$

Our proof is completed by the observation that $R(z) R(\bar{z})$ is an (m, n)-degree rational function in the variable x.

Reference

1. G. Meinardus, "Aproximation of Functions: Theory and Numerical Methods," Springer-Verlag, New York, 1967.
